Results

Task 1: Recognition and normalization of temporal expressions

Best system: Alium_01

Prize winner: none (no submissions with source released)

System nameF1PR
Alium_01 (Strict Match) 58.81 58.91 58.72
Alium_01 (Relaxed Match) 86.49 86.63 86.35

Attribute F1

System nameValueType
Alium_01 (Strict Match) 68.7 80.23

Task 2: Lemmatization of proper names and multi-word phrases

Best system: bronk

Prize winner: out_second_model_new1.

System nameAccCS
AccCI
Score 
bronk 84.78 88.13  87.46
out_second_model_new1 72.46 75.46 74.86
out_second_model3  68.85 71.71 71.14

 

System nameAccCS
AccCI
Score 
zbronk.nlp.studio 95.11 95.72  95.60
PolEval2019-lemmatization-out-3 58.95 61.14 60.70
PolEval2019-lemmatization-out-2 56.42 58.25 57.89

Task 3: Entity linking

Best system: zbronk.nlp.studio

Prize winner: Cheeky Mouse

System namePrecision
zbronk.nlp.studio 91.9 (withdrawn)
model-1 77.2
Cheeky Mouse 26.7

Task 4: Machine translation

Best system: SRPOL

Prize winner: DeepIf

EN-PL

System nameBLEU
NIST
TERMETEOR
SRPOL 28.23 6.60  62.13 47.53
Google Translate 16.83      
ModernMT 16.29      
ModernMT (in-domain) 14.42      
DeepIf (in-domain) 4.92 2.27 86.56 21.74
SIMPLE_SYSTEMS 0.94 1.12 97.94 9.81

PL-RU

System nameBLEU
NIST
TERMETEOR
Google Translate 15.78      
ModernMT 12.71      
DeepIf (in-domain) 5.38 2.53 83.02 53.54
SIMPLE_SYSTEMS 0.69 0.85 102.75 41.06

RU-PL

System nameBLEU
NIST
TERMETEOR
Google Translate 13.54      
ModernMT 11.45      
ModernMT (in-domain) 5.73      
DeepIf (in-domain) 5.51 2.97 85.27 24.08
SIMPLE_SYSTEMS 0.57 1.29 109.43 8.35

Task 5: Automatic speech recognition

Best system: GOLEM

Prize winner: GOLEM

 Overall statsPer file WER stats 
System nameWER%
CORR%
SUB%DEL%INS%MeanStdDevMedianType
GOLEM 12.8 90.1 6.9 3 2.9  13.3 8.8 11.9  closed
ARM-1 26.4 77  16.5 6.5  3.4  27.2 13.5  24.7  open
SGMM2 41.3 65.2 27.1 7.7 6.5 41.3 18.1 38.8  open
tri2a 41.8 62.9 26.8 10.3 4.7 41.4 16.9 38.5  open
clarin-pl/sejm 11.8 89.7 5.4 5 1.4 12 7.9 9.8  closed
clarin-pl/studio
30.9 71.4 16 12.6 2.4 30.4 13.6 25.9  open

Task 6: Automatic cyberbullying detection

Subtask 6.1

Best system: n-waves ULMFiT

Prize winner: n-waves ULMFiT

System namePrecision
Recall
F1Accuracy
n-waves ULMFiT 66.67 52.24 58.58 90.10
Przetak 66.35 51.49 57.98  90.00 
ULMFiT + SentencePiece + BranchingAttention 52.90 54.48  53.68  87.40 
ensamble spacy + tpot + BERT 52.71 50.75  51.71  87.30 
ensamble + fastai 52.71 50.75  51.71  87.30 
ensenble spacy + tpot 43.09 58.21 49.52 84.10
Rafal-1 41.08 56.72 47.65 83.30
Rafal-2 41.38 53.73 46.75 83.60
model1-svm 60.49 36.57 45.58 88.30
fasttext 58.11 32.09 41.35 87.80
SCWAD-CB 51.90 30.60 38.50 86.90
model2-gru 63.83 22.39 33.15 87.90
model3-flair 81.82 13.43 23.08 88.00
Task 6: Automatic cyberbullying detection (J.K.) 17.41 32.09 22.57 70.50

 

Subtask 6.2

Best system: model1-svm

Prize winner: model1-svm

System nameMicro-Average F1
Macro-Average F1
model1-svm 87.60 51.75
ensamble spacy + tpot + BERT 87.10 46.45
fasttext 86.80 47.22
model3-flair 86.80 45.05
SCWAD-CB 83.70 49.47
model2-gru 78.80 49.15
Task 6: Automatic cyberbullying detection (J.K.) 70.40 37.59
ensamble + fastai 61.60 39.64